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Abstract. We study (magnetic) Dirac and S c m i n g e r  opxators for general two-dimensional 
manifolds. We find relations between them and use these as tools for calculating ground-state 
degeneracies of various electronic systems (with~and without spin). We find examples which 
have a degenerate ground state, although there are no symmelry operators commuting with the 
Schrodinger operator. The connection between the two operaton is related to a Berry phase. 

1. Introduction 

When one considers Schrodinger operators on Riemannian manifolds with constant curvature 
in the presence of a constant magnetic field perpendicular to the surface, one finds degenerate 
Landau levels. The degeneracies are computable, and so are several of the magneto-transpofi 
properties ([l, 21 and references therein). 

Remembering that degeneracy of energy levels is very unusual for Schrodinger 
operators, a natural question to ask is ‘Can we find other (non-constant curvature) surfaces 
which give degenerate energy levels?. 

If we reshict ourselves to the ground-state degeneracy, it turns out that an easy way 
to do this is by using the Atiyah-Singer index theorem for the Dirac operator (as will be 
explained soon). 

A Dirac operator is a first-order differential operator that describes a (relativistic) spin- 
half particle. n e  number of its zero modes is very stable against perturbations (a more 
precise statement appears in the next section). In particular, for a two-dimensional system 
in a perpendicular magnetic field, the number of zero modes is generically of the order of 
the number of magnetic flux quanta through the surface. 

When we write the Dirac operator explicitly, we find that its square resembles the 
Schriidinger operator. This connection enables us to calculate the ground-state degeneracy 
of the Schrodinger operator, using the index theorem for Dirac operators. 

We emphasize that although we are using the Dirac operator as a mathematical tool, it 
is indeed relevant for the description of electrons (particles with spin) on curved manifolds. 
This can be shown by deriving the appropriate Schrodinger-Pauli operator-which turns 
out to be proportional to the square of the Dirac operator. 

In section 2 we present both the Dirac and 
Schrodinger operators for a particle on an arbitrary two-dimensional surface, under the action 
of arbitrary magnetic fields. In section 3 we use these to get the ground-state degeneracy 
for various electronic systems (with and without spin). In section 4 we give a ‘physical 
explanation’ for the effective magnetic field we got, as a manifestation of a Berry phase in 
real space. 
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The paper is organized as follows. 
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2. Dirac and Schrodinger operators 

We present thc Dirac and Schrodinger operators. We give explicit expressions only for a 
particle on a two-dimensional surface, (which is what we need). Although this result is not 
new, we  give the Dirac operator in a form much simpler than usually found in textbooks. 

For convenience, we chose to work with the system of units where f i  = c = Zm, = 1, 
and we absorb the electron's charge in the definition of the magnetic field. 

We write the Dirac equation in the form E @  = ( $ + fim) +, where $ denotes the 
Dirac operator on the surface, and #J is a constant Hermitian matrix satisfying fi2 = 1. There 
is aprescription for writing $, with the 'spin-connection' formalism (see, for example, €51). 
When simplified, it gives, for a free particle on a two-dimensional surface, with a metric 
tensor gwu: 

9 = -ic" (Eta, + 4 E:a, In f i  + ;a$,"). (1) 

[E", zb) = 0 (a # b)  IC", f i )  = 0 (E")' = I (2) 

GabEfE,Y =g'" g,,EfE,V = J o b  (3) 

Here Cy denotes the Hermitian Dirac matrices, satisfying 

(curly brackets stand for anti-commutators). g denotes the determinant of the metric tensor, 
and E: are numbers which satisfy: 

Note that $ = ~ ' ( E t P p ) h . p . ,  where Pfi = -ia, is the usual (flat) momentum operator, 
and (EfPw]h.p .  denotes the Hermitian part of the operator (the hermeticity is relative to the 
metric). 

To introduce a magnetic field B, all we have to do is replace the ordinary derivative 
by a covariant one -ia, -+ -ia, - A,, where dA = B. 

We see from these definitions that for a given surface, we have many degrees of freedom 
in writing the Dirac equation. First, we can choose a coordinate system (for example, on 
the plane we can use Cartesian coordinates, polar coordinates etc). This fixes the metric 
tensor. Then, we have to choose E:, since if E: satisfies the conditions of equation 3, so 
does O:Et, where 0: is any orthogonal matrix. Next, we have the gauge freedom of the 
magnetic vector potential A, and finally, we  have to choose our (constant) C matrices. 

Naturally, we choose the easiest coordinate system to work with, and take a conformal 
metric tensor (in two dimensions this can always be done): 

where U is a function of the coordinates. 
We also choose: 

E: = e-'8: (5) 
(Note that it is not always possible to choose one coordinate system which covers the entire 
surface. In such cases, one covers the manifold by a few patches with a definite coordinate 
system in each, and gives 'transition functions' among them.) 

We choose our Dirac matrices to be C' = ua, where uR are Pauli sigma matrices, and 
a is either 1 or 2. 

The Dirac operator now reads 
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whereweusethenotations: z ~ x l + i x 2 , i : ~ ~ , - ~ ~ , a ~ ~ ( A ~ + i A 2 ) , Z i ~ ~ ( A 1 - i A a ) .  
Taking 6 = u3, we get the Dirac equation. 

(Remember that E is the total energy, expressing the contribution of both the kinetic energy 
Ek and the mass.) 

The Schrodinger operator for an electron on the same surface, under the action of a 
magnetic field B’ = dA’, a‘ = $(A’, + iA;) is 

H,(B’) = -e-& [ (a, - i 4 ) ’+  (a2 - iA;)’ I 
- - -e+ [ 4aZi - 4i(a’a, + i’ai) - zi(a,a’ + aid’) - ~U’Z’]. (8) 

To see the connection between the Dirac and Schrodinger operators, notice that: 

Comparing this with the Schrodinger operator, Hs, and choosing a‘ = a + f ( ap ) .  we get 

(11) 

Note that if a is a vector potential for a magnetic field B (not necessarily constant), then a’ 
is a vector potential for a magnetic field B - I k ,  where k is the Gaussian curvature of the 
surface, k = -4e-zoazi~. 

Similarly, we get: 

K t K ( B )  = H,(B - fk) - ( B  - ik). 

To summarize our results: we have found that 

We give two examples. On a plane, k = 0 and the operator reads 

On a general surface, in the absence of a magnetic field, we get 

3. Degeneracies of Energy Levels 

We demonstrate how to calculate the ground state, and the degeneracies of other levels, for 
certain Schrodinger operators. 
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3. I .  Ground-state degeneracies of Schrodinger operators 

We explicitly calculate the ground-state degeneracy of a Schrodinger operator describing an 
electron on an arbitrary closed Riemann surface, under the action of a constant magnetic 
field. 

Let us start with a known result: for a compact, closed, two-dimensional surface, 

Index $ = Dim Ker K - Dim Ker K t - r  - j B  2iI (16) 

where DimKerK(Kt) denotes the dimension of the function space for which Kf =~ 0 
( K t  f = 0). This is a special case of the Atiya-Singer index theorem [3]. Notice that 
the index equals the ground-state degeneracy of the operator $’ if and only if one of the 
kernels is empty. 

We use this equation to calculate the ground-state degeneracy of a Schradinger operator 
for a particle on such a surface: 

H,(B) = K t K ( B  + ik) + B = K K t ( B  - ik) - B 

H5(B + k) = K t K  B + - + ( B  + k) = K K t ( B  + ik) - ( B  + k). (17) 

Assume B is constant (otherwise there in no reason for the ground state to be degenerate). 
If we choose B and B + k to be everywhere positive, we immediately find that 

Dim Ker K t ( B  - ik) = Dim Ker K t ( B  + f k )  = 0 (as H, is positive definite), hence in 
this case, the ground-state degeneracy of H,(B), do[H,(B)], is: 

( 3 

do[H,(B)] = DimKerK(B + ik) =Index[ $(B + i k ) ]  
= - / ( B + f k )  1 = 

2x 

where g is the genus of the surface (the number of handles: g = 0 for a sphere, g = 1 
for a torus etc). For the case where E and B - k are negative, we have to replace B by 
IBI = -B. 

We get the following general result: the ground-state degeneracy for a Schrodinger 
operator describing a spinless particle on a compact, closed manifold, under the action 
of a constant magnetic field B perpendicular to the surface, is the number of magnetic 
flux quanta through the surface plus 1 - g, provided the magnetic field is strong enough 
(8, B + k z 0 everywhere). I f  it is not, it is only a lower bound on the degeneracy. We 
make the following remarks: 

(a) The ground-state degeneracy contains information about the topology of the manifold 
(contrary to the spinor case where only the total magnetic flux determines the 
degeneracy). Moreover, the degeneracy does not follow from any g w t r y  principle, 
and we know of no reason for other energy Ievels to be degenerate. 

(b) Contrary to the case of a the Dirac operator, for a Schrodinger operator a degeneracy 
would exist only if the magnetic field is constant. Any deviation from this situation 
can remove it. 

(c) We found the ground-state degeneracy for m y  compact, closed surface. For example, 
this shows that for all tori, the ground-state degeneracy is equal to the number of 
magnetic flux quanta through the surface, independent of the specific shape of the torus, 
as long as the magnetic field is constant. This result was known by explicit calculations 
only for the flat torus.Note, however, that while this result holds unconditionally for the 
flat torus, here we have conditions on the strength of the magnetic field. 
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(d) In [SI, Wen and Zee introduced the notion of a shift, which is the difference between 
the number of flux quanta through the surface and the ground-state degeneracy. We 
proved that the value of this shift for a Schrodinger particle is (1 - g). We remark that 
for a Dirac particle, under similar but local conditions on B, the shift vanishes. (These 
conditions assure that only one spin state contributes to the index, and hence its absolute 
value equals the number of zero modes.) 

3.2. Calculating the energies and degeneracies of Landau levels for constant-curvature 
surfaces 

Generically, only the ground state of a Schrodinger operator will be degenerate if the 
operator is defined over a general manifold. (There is no symmetry operator commuting 
with the Hamiltonian). It is known, however, that there is a class of surfaces where all the 
Landau levels are degenerate: those with a constant curvature. We want to demonstrate how 
to calculate the energy levels and their degeneracies using the AtiyaSinger index theory. 
We restrict ourselves to compact, smooth surfaces. 

We assume that E and k are constant, and B + f k  > 0. In this case, KerKKt(B) 
is empty, while K e r K t K ( B )  is not. Because Spec(KtK/O) = Spec(KKt/O), all other 
eigenvalues of these operators are the same, including multiplicities. This tells us that 
the first excited eigenvalue of K t K  equals the lowest eigenvalue of K K t .  But using 
equations 11 and 12,, we find that this eigenvalue is 2B + k .  This gives us the  first 
excited energy level of H,(B - i k ) ,  and hence the first excited enerw of H,(B + $), 
(H,(B+ i k )  = H,(B'- 4). B' B+ 5). from this we derive the second excited eigenvalue 
of KtK, and so on. 

Denoting by A t K '  and A t t K  the qth eigenvalue of K K t  and K t K  respectively, and 
by E4(B') the qth energy level for the Schrodinger operator with magnetic field B', this 
procedure gives us 

E9(B - i k )  = A,K'K(B) + (€3 - i k )  

h K K ' ( ~ )  4 = A , K ' ~ ( B )  + ( 2 ~  + k )  = A~:(B). 

AKtK(B) 9 = 2qB + q2k (21) 

E,(@ = A t t K ( B  + i k )  + B = (2q + 1)B +q(q + Ilk. 

E9(B + i k )  =AY'@) - ( B  + i k ) .  (19) 

(20) 

From which we obtain 

Using A ~ ' ' ( B )  = 0, we get 

and 

(22) 
For example, the energy levels for a Schrodinger particle on a flat torus are equally 

spaced, E4 = 2qB. On a sphere the spacing between two consecutiv*e levels increases with 
energy, while on a negative curvature manifold it decreases. 

Calculating the degenerucies now becomes simple: the degenexacy of the qth energy 
level of H,(B - $f) equals the degeneracy of the (q - 1)th energylevel of H,(B + $k) .  
Knowing the ground-state degeneracy do(Hs(B - i k ) )  = & B ,  we:get d9(Hs(B - kk))  = 

v 

~ 1 B + + q ( l - g ) , o r  1 

dq(Hs(B)) - B + (2q + lI(1-g) (23) 21t ' S  
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where cfq(Hs(B)) denotes the 4% energy level degeneracy. It is easy to verify that for 
non-negative k equation 22, 23 holds for every q E 2,. while for negative k it holds 
only for 4's satisfying: q < (B/ lk l )  - 1 (remember that we calculated cfoN(B') assuming 
B', B' + k > 0). 

We note that we can also reverse the direction, and use known results on Schrocfinger 
operators, to find the number of zero modes for the Dirac operator. (For example, on 
non-compact, finite-area, constant negative surface [I]). 

4. The effective magnetic field and Berry's phase 

We explain why the Dirac equation with a given magnetic field is connected to a Schradinger 
equation with a different magnetic field, which depends on the geometrical curvature of the 
surface. The source of this is clear: eigenspinors of the form 

correspond to a spinor pointing perpendicular to the manifold, the spin pointing in the 
direction parallel or anti-parallal to the (local) area form. In our discussion, we always pick 
one of these forms, depending on the sign of the magnetic field. Therefore, we consider 
a system for which the direction of,the spin is at any point perpendicular to the surface, 
and because of that, if the curvature does not vanish, this direction is changing (imagine an 
embedding of the surface into a flat Eucleadian space of higher dimension. For example, a 
sphere in R3). 

To clarify this point, let us concentrate on the embedding of the surface, and use afu;ed 
coordinate system (the Dirac equation then has its usual form). If we choose continuous 
wave functions on the surface, 

*",.dawn = (g ) 
",.down 

(the labels refer to the spin direction: up if it is in the direction of the area form, and down 
if it is in the opposite direction). Then, generically, because the direction of the area form 
varies, we have 

-i(*"p,dwnld*"'up,down) A$,dawn # 0. (24) 
The effective field we get is simply Be' = dAeff. Note that these wavefunctions cannot be 
continuously extended to the entire embedding space. 

A very clear and simple example can be found in a paper by Stone [7]: when an 
electron is forced to move while itsspin points in the F direction (using the usual spherical 
coordinates of R3), we get, fors, = rtl/2, an effective magnetic field of a monopole with 
strength *; at the origin. (Take, for example, the up spin state: 

A$ G -i(*upld@up) = f ( l  -cos@) d$ 

and hence 
B,, - I ' e d e d b  

and if the spinor is confined to a sphere of radius R, B$ = &d(area) = $d area). 
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Here we should point out that there is a known, related, general claim that performing the 
Born-Oppenheimer (BO) approximation for a spin in high magnetic field and then integrating 
out the spin degree of freedom, leads to an effective magnetic field. In our case, dealing with 
intrinsically two-dimensional systems did, automatically, the job of the BO approximation. 

That is, the effective magnetic field we got is simply the curl of a Berry phase [4], 
emerging from the spin holonomy. 

Contrary to Berry’s original example, here the field direction depends on two ‘real’ 
coordinates, rather than on two parameters, and therefore we get an effective magnetic field 
in the real space and not in a parameter space. 

Interestingly enough, the mixed situation (where the phase depends on one spatial 
coordinate and one parameter) was also considered Stern describes in 161 an example 
of a spinor living on a ring located on the x-y plane, under the action irf a magnetic field 
B  cos rui + sin rue^). We see that the direction of the field depends both on the parameter 
a, and the coordinate around the ring, 8. A short calculation gives A$down = i (l&cosa)d8, 
and so, $A$down = n(l i cosor)d8, and persistent currents would be different for each 
spin direction. (Because we have one spatial coordinate, we can define an effectiveflux in 
real space, but there is no meaning for a definition of an effective magneticfield). 

To summarize, the effective shift of the magnetic field comes from the fact that we 
imposed implicitly the constraint that enforces the spin to point at a direction perpendicular 
to the surface, and got a holonomy effect that caused a Berry phase in real space. 

5. Two-dimensional Dirac spinors and three-dimensional electrons 

After introducing the Dirac and Schrodinger operators on two-dimensional surfaces, it is 
natural to ask if these equations can describe electrons in thin films, in the three dimensional 
world. In some cases, the answer to this question is positive. 

For a Schrodinger particle, if the thin film induces no significant effective potential and 
the energy scale of its width is high enough, we can neglect the third dimension. 

To understand the relevance of the Dirac operator to real experimental set-ups, one 
has to build an appropriate Schrodinger-Pauli operator for the non-relativistic electrons. 
To first-order approximation, this operator equals $ , and the equation describing ‘two- 
dimensional’ electrons is Jb @ = ia@/at, where @ is a two-component wave function. 
The equation describes ‘two-dimensional electrons’, and the eigenspinors describe electrons 
with spin direction perpendicular to the surface. In a real experiment, even if we have a 
two-dimensional electron gas, the spin can point at any direction in space. Therefore, our 
results are applicable if, and only if, we force the spin to be everywhere perpendicular to 
the surface. This can be done if we impose sufficiently high magnetic fields perpendicular 
to the manifold. Note that where the Gaussian curvature is large, this is not a trivial task at 
all, but it will do as a ‘gedanken experiment’. 

2 

2 

Acknowledgments 

I would like to thank J E Awon, D Bar Moshe, M Klein, 0 Levin, M Marinov and A Peres 
for helpful and interesting discussions. The research is supported by the DFG and GIF. 

References 

(11 Avron I E, Klein M, Pnueli A and Sadun L 1992 Phys. Rev. Lett. 69 128 



1352 A Pnueli 

[2] Avron J E and Pnueli A 1992 Landau Hamiltonians on symmeuic spaces Ideas& Merhodr in Quartrum and 
Srorisfical Physics vol2, ed S Albeverio. J E Fenstad. H Holden and T Linds@om (Cambridge: Cambridge 
University Press) p 96 

131 Atiyah M F and Singer I M 1968 Ann. Mark 87 485,546; 1971 Ann. Mruh 91 119. 139 
[4] Beny M I984 Proc. R. Soc. A 392 45 
[51 Green M B, Schwarz J H and Witten E 1987 Supemring Theory (Cambridge: Cambridge University Press) 

[6] Stem A 1992 Phys. Rev. Le#. 68 1022 
171 Stone M 1986 Phys. Rev. D 33 1191 
IS] Wen X G and Zee A 1992 Phys. Rev. Lett. 69 953; 1992 Phys. Rev. B 46 2290 

vol 1 p 224, "012 p 271 


