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Abstract. We study (magnetic) Dirac and Schrédinger operators for general two-dimensional
manifolds. We find relations between them, and use these as roels for calculating ground-state
degeneracies of various electronic systems (with and without spin). We find examples which
have a degenerate ground state, although there are no symmetry operators commuting with the
Schridinger operator. The connection between the two operators is related to a Berry phase.

1. Introduction

When one considers Schrédinger operators on Riemannian manifolds with constant curvature
in the presence of a constant magnetic field perpendicular to the sucface, one finds degenerate
Landau levels. The degeneracies are computable, and so are several of the magneto-transport
properties ({1, 2] and references therein).

Remmembering that degeneracy of erergy levels is very unusual for Schridinger
Opcrators, a natural question to ask is ‘Can we ﬁnd other (non-constant curvature) surfaces
which give degenerate energy levels?.

If we restrict ourselves to the ground-state degeneracy, it turns out that an easy way
to do this is by using the Atiyah-Singer index theorem for the Dirac operator (as will be
explained soon).

A Dirac operator is a first-order differential operator that describes a (relativistic) spin-
half particle. The number of its zero modes is very stable against perturbations (a more
precise statement appears in the next section). In particular, for a two-dimensional system
in a perpendicular magnetic field, the number of zero modes is generically of the order of
the number of magnetic flux quanta through the surface.

When we write the Dirac operator explicitly, we find that its square resembles the
Schridinger operator. This connection enables us to calculate the ground-state degeneracy
of the Schridinger operator, using the index theorem for Dirac operators.

We emphasize that although we are using the Dirac operator as a mathematical tool, it
is indeed relevant for the description of electrons (particles with spin) on curved manifolds.
This can be shown by deriving the appropriate Schrédinger-Pauli operator—which turns
out to be proportional to the square of the Dirac operator.

. The paper is organized as follows. In section 2 we present both the Dirac and
Schrddinger operators for a particle on an arbitrary two-dimensional surface, under the action
of arbitrary magnetic fields. In section 3 we use these to get the ground-state degeneracy
for various electronic systems (with and without spin). In section 4 we give a ‘physical
explanation’ for the effective magnetic field we got, as a manifestation of a Berry phase in
real space.
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2. Dirac and Schridinger operators

We present the Dirac and Schrodinger operators. We give explicit expressions only for a
particle on a two-dimensional surface, (which is what we need). Although this resuit is not
new, we give the Dirac operator in a form much simpler than usually found in textbooks.

For convenience, we chose to work with the system of units where i = ¢ = 2m, = 1,
and we absorb the electron’s charge in the definition of the magnetic field.

We write the Dirac equation in the form Ey = ( B+ fm), where Jb denotes the
Dirac operator on the surface, and 8 is a constant Hermitian matrix satisfying 8% = I. There
is a prescription for writing ﬁﬁ, with the ‘spin-connection’ formalism (see, for example, [5]).
When simplified, it gives, for a free particle on a two-dimensional surface, with a metric
tensor guu’

P=—iz%(EF3, + 1EL0,. In /g + 18, EX}. (1)
Here Z¢ denotes the Hermitian Dirac matrices, satisfying
{£9, 2% =0 (@a#b) {ze, gy =10 (=¥ =1 )

(curly brackets stand for anti-commutators). g denotes the determinant of the metric tensor,
and E¥ are numbers which satisfy: -

82PEFE) = g SuEFE} =84 3)

Note that Jf = T4{E{ Py}, where P, = —id,, is the usual (flat) momentum operator,
and {E} P, }up, denotes the Hermitian part of the operator (the hermeticity is relative to the
metric). .

To introduce a magnetic field B, all we have to do is replace the ordinary derivative
by a covariant one —id, — —i8, — A,, where d4 = B.

We see from these definitions that for a given surface, we have many degrees of freedom
in writing the Dirac equation. First, we can choose a coordinate system (for example, on
the plane we can use Cartesian coordinates, polar coordinates etc). This fixes the mefric
tensor. Then, we have to choose EY, since if ES satisfies the conditions of equation 3, so
does OFEY, where Of is any orthogonal matrix. Next, we have the gauge freedom of the
magnetic vector potential A, and finally, we have to choose our {constant) X matrices.

Naturally, we choose the easiest coordinate system to work with, and take a conformal
metric tensor {(in two dimensions this can always be done):

1 0
w3

where ¢ is a function of the coordinates.
We also choose:

Ef =e™0 8" (5)

(Note that it is not always possible to choose one coordinate system which covers the entire
surface. In such cases, one covers the manifold by a few patches with a definite coordinate
system in each, and gives ‘transition functions’ among them.)

We choose our Dirac matrices to be X2 = ¢?, where o are Pauli sigma matrices, and
a is either 1 or 2.

The Dirac operator now reads

P=—ie™ (oM(D) +1010) + 02 D2 + 18:0))

- 0 28, + 8,0 -2\ _ {0 K
=-r (2az+afcr~2ia 0 =\x ¢ ©)
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where we use the notations: z = x1 +ix2, Z =X —ix, a = (A1 +idz), @ = (A —i42).
Taking B = o3, we get the Dirac equation,

(& 2 (0)-=(%)

(Remember that E is the total energy, expressing the contribution of both the kinetic energy
E; and the mass.)
The Schridinger operator for an electron on the same surface, under the action of a
magnetic field B’ = dA’, a’ = }(A] +iA}) is
H,(B) = —e™ [ (3 —i4})* + (3, — 1497 |
= =% [ 48,; — 4i{a'd, + 3'3;) — 2i(8,a’ + 8:a’) — 4a'@']. (8)

To see the connection between the Dirac and Schiddinger operators, notice that:
2 Ktk 0
p= ( 0 KKT) ©
where

KTE(B) = -7 [48,; — (3,0)(8:0) + 2(850)
' x2{{8;5)8, = (9,0)9;) + 2i{a(3;0) — @(3;0)) :
—4i(ad, + ad;) — 4i(8,a) — 4aa). . (10

Comparing this with the Schrodinger operator, H, and choosing a’ = a + %(azcr), we get

K'K(B)= Hy(B — 3k) — (B — k). (11

Note that if @ is a vector potential for a magnetic field B (not necessarily constant), then a’

is a vector potential for a magnetic field B — %k, where k is the Gaussian curvature of the
surface, k = —4e7%°§,;0.
Similarly, we get:

k k
Kxt(B)= H, (B + -2—) + (B + -2—) . (12)
To summarize our results: we have found that .
2 H(B— ik)y— (B -1k 0
By = 2 2 . 13
P& ( 0 Hy(B + 3k) + (B + 3k) (3)
We give two examples. On a plane, k = 0 and the operator reads
2.« _ { Hi(B)—B 0
¢(B)—( A HS(B)+B)' (14)
On a general surface, in the absence of a magnetic field, we get
20 [ H(B=-5+1k 0
? B=0= ( 0 H(B =k +ik) 15

3. Degeneracies of Energy Levels

We demonstrate how to calculate the ground state, and the degeneracies of other levels, for
certain Schridinger operators.
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3.1. Ground-siate degeneracies of Schrddinger operators

‘We explicitly calculate the ground-state degeneracy of a Schrédinger operator describing an
electron on an arbitrary closed Riemann surface, under the action of a constant magnetic
field.

Let us start with a known result: for a compact, closed, two-dimensional surface,

1
Index Jp=DimKer K — DimKer k' = 3= f B (16)

where DimKer K (K1) denotes the dimension of the function space for which Kf = 0
(KT = 0). This is a special case of the Atiya-Singer index theorem [3]. Notice that
the index equals the ground-state degeneracy of the operator 4252 if and only if one of the
kernels is empty.

We use this equation to calculate the ground-state degeneracy of a Schrédinger operator
for a particle on such a surface:

Hy(B)=K'K(B+1k)+B=KK'(B—iKk)-B
Hy(B+k)=K'K (B + 3—;-) +(B+k) =KK' B+ L) - (B+k). (17)

Assume B is constant (otherwise there in no reason for the ground state to be degenerate),

If we choose B and B + k to be everywhere positive, we immediately find that
DimKec K1(B — %k) = DimKer X(B + %Ic) = 0 (as H; is positive definite}, hence in
this case, the ground-state degeneracy of Hy(B), dolH;( B3], is:

do[Hs(B)] = Dim Ker K(B + k) = Index[ J}(B + k)]

_ 1 iy L _
= [Griw=5 [Bra-g (18)

where g is the genus of the surface (the number of handles: g = O for a sphere, g = 1
for a torus etc). For the case where B and B — & are negative, we have to replace B by
tB| = —B.

We get the following general result: the ground-state degeneracy for a Schriidinger
operator describing a spinless particle on a compact, closed manifold, under the action
of a constant magnetic field B perpendicular to the surface, is the number of magnetic
flux quanta through the surface plus 1 — g, provided the magnetic field is strong enough
(B, B +k > 0 everywhere). If it is not, it is only a lower bound on the degeneracy. We
make the following remarks:

{a) The ground-state degeneracy contains information about the topology of the manifold
(contrary to the spinor case where only the total magnetic flux determines the
degeneracy). Moreover, the degeneracy does not follow from any symmetry principle,
and we know of no reason for other energy levels to be degenerate.

(b) Contrary to the case of a the Dirac operator, for a Schrodinger operator a degeneracy
would exist only if the magnetic field is constant. Any deviation from this situation
can remove it.

(c) We found the ground-state degeneracy for any compact, closed surface. For example,
this shows that for all tori, the ground-state degeneracy is equal to the number of
magnetic flux quanta through the surface, independent of the specific shape of the torus,
as long as the magnetic field is constant. This result was known by explicit calculations
only for the flat torus.Note, however, that while this result holds unconditionally for the
flat torus, here we have conditions on the strength of the magnetic field.
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(d) In [8], Wen and Zee introduced the notion of a skift, which is the difference between
the number of flux quanta through the surface and the ground-state degeneracy. We
proved that the value of this shift for a Schridinger particle is (1 — g). We remark that
for a Dirac particle, under similar but local conditions on B, the shift vanishes. (These
conditions assure that only one spin state contributes to the index, and hence its absolute
value equals the number of zero modes.)

3.2. Calculating the energies and degeneracies of Landau levels for constant-curvature
surfaces

Generically, only the ground state of a Schrédinger operator will be degenerate if the
operator is defined over a general manifold. (There is no symmeiry operator commuting
with the Hamiltonian). It is known, however, that there is a class of surfaces where all the
Landau levels are degenerate: those with a constant curvature. We want to demonstrate how
to calculate the energy levels and their degeneracies using the Atiya—Singer index theory.
We restrict ourselves to compact, smooth surfaces.

We assume that B and & are constant, and B + %k > 0. In this case, Ker K K1(B)
is empty, while Ker KK (B) is not. Because Spec(K7K /0) = Spec(K K1/0), all other
eigenvalues of these operators are the same, including multiplicities. This tells us that
the first excited eigenvalue of KTK equals the lowest eigenvalue of KX, But using
equations 11 and 12, we find that this eigenvalue is 2B + k. This gives us the first
excited energy level of H(B — %k), and hence the first excited energy of H;(B + %k),
(HS(B-E- k) = H(B' — %), B =B+ %). from this we derive the second excited eigenvalue
of KK, and 50 On.

Denoting by A¥ £ and AK?K the gth eigenvalue of KK' and KTK respectlvely, and
by E,(B’} the qth energy Ievcl for the Schridinger operator with magnetic field B’, thlS
procedurc gives us

Ey(B — 1) = 2K%(B) + (B - L&)

Ey(B+ k) = 2XX'(B) — (B + L. | (19)
From which we obtain 7

AEKUB) = MK (B + (2B + 1) = x;‘;{‘ (B). (20)
Using AX'X(B) = 0, we get

A;"K(B) =29B + g°k 1)
and

E,(B)=AX'"K(B + k) + B = (2¢ + DB +q{q + Dk. (22)

For example, the energy levels for a Schridinger particle on a flat torus are equally
spaced. E; = 2¢B. On a sphere the spacing between two consecuﬂve levels increases with
energy, while on a negative curvature manifold it decreases. -

Calculating the degeneracies now becomes simple: the degeneracy of the gth energy
level of Hy(B — —k) equals the degeneracy of the (g — 1)th energy-level of H(B + —k)
Knowing the ground-state degeneracy do(Hy(B — 3k)) = 2 [ B, we get d, (H(B — %k)) =
= [B+29(1—g),or .

1
dy(Hy(B)) = 7 f B+(2q+1)(1-g) ‘ (23)
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where d,;(H;(B)) denotes the g’th energy level degeneracy. It is easy to verify that for
non-negative k£ equation 22, 23 holds for every ¢ € Z,, while for negative & it holds
only for ¢’s satisfying: g < {B/{k[) — | (remember that we calculated dpH (B’) assuming
B,B' +k=0.

We note that we can also reverse the direction, and use known results on Schrédinger
operators, to find the number of zero modes for the Dirac operator. (For example, on
non-compact, finite-area, constant negative surface {I]).

4. The effective magnetic field and Berry’s phase

We explain why the Dirac equation with a given magnetic field is connected to a Schréidinger
equation with a different magnetic field, which depends on the geometrical curvature of the
surface. The source of this is clear: eigenspinors of the form

(%) = (&)

correspond to a spinor pointing perpendicular to the manifold, the spin pointing in the
direction parallel or anti-parallal to the (local) area form. In our discussion, we always pick
one of these forms, depending on the sign of the magnetic field. Therefore, we consider
a system for which the direction of the spin is at any point perpendicular to the surface,
and because of that, if the curvature does not vanish, this direction is changing (imagine an
embedding of the surface into a flat Bucleadian space of higher dimension. For example, a
sphere in R?),

To clarify this point, let us concentrate on the embedding of the surface, and use a fixed
coordinate system (the Dirac equation then has its usual form). If we choose continucus

wave functions on the surface,
wup down = (¢1 )
' 1’!;2 up,down

(the labels refer to the spin direction: up if it is in the direction of the area form, and down
if it is in the opposite direction). Then, generically, because the direction of the area form
varies, we have

—i{Yup,down|dWrup,down} = up down # 0. (24)

The effective field we get is simply B° = dA°T. Note that these wavefunctions cannot be
continuously extended to the entire embedding space.

A very clear and simple example can be found in a paper by Stone [7]: when an
electron is forced to move while its spin points in the 7 direction (using the usual spherical
coordinates of R¥), we get, for 5, = £1/2, an effective magnetic field of a monopole with
strength 1 at the origin. (Take, for example, the up spin state:

1’5‘ . cas %‘
%7 sin §ei¢

A = (Y| dinp) = 4(1 — cos§) do
and hence
ngf = Lsin8 d6 d¢

and if the spinor is confined to a sphere of radius R, BEEF szd{area) = "d area).

2.122
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Here we should point out that there is a known, related, general claim that performing the
Born-Oppenheimer (BO) approximation for a spin in high magnetic field and then integrating
out the spin degree of freedom, leads to an effective magnetic field. In our case, dealing with
intrinsically two-dimensional systems did, automatically, the job of the BO approximation.

That is, the effective magnetic field we got is simply the curl of a Berry phase [4],
emerging from the spin holonomy.

Contrary to Berry’s original example, here the field direction depends on two ‘real’
coordinates, rather than on two parameters, and therefore we get an effective magnetic field
in the real space and not in a parameter space.

Interestingly enough, the mixed situation (where the phase depends on one spatial
coordinate and one parameter) was also considered: Stern describes in [6] an example
of a spinor living on a ring located on the x—y plane, under the action of a magnetic field

= (cos &% +sina@). We see that the direction of the field depends both on the parameter
o, and the coordinate around the ring, 8. A short calculation gives Aup down = 3(1Ecos)df,
and so, ¢ Aup down = (1 =k cosa)df, and persistent currents would be different for each
spin direction. (Because we have one spatial coordinate, we can define an effective flux in
real space, but there is no meaning for a definition of an effective magnetic field).

To summarize, the effective shift of the magnetic field comes from the fact that we
imposed implicitly the constraint that enforces the spin to point at a direction perpendicular
to the surface, and got a holonomy effect that caused a Berry phase in real space.

5. Two-dimensional Dirac spinors and three-dimensional electrons

After introducing the Dirac and Schrédinger operators on two-dimensional surfaces, it is
natural to ask if these equations can describe electrons in thin films, in the three dimensional
world. In some cases, the answer to this guestion is positive.

For a Schriédinger particle, if the thin film induces no significant effective potential and
the energy scale of its width is high enough, we can neglect the third dimension.

To understand the relevance of the Dirac operator to real experimental set-ups, one
has to build an appropriate Schrédinger—Pauli operator for the non-relativistic electrons.
To first-order approximation, this operator equals ,}752, and the equation describing ‘two-

dimensional’ electrons is ¢2w = idyr/at, where i is a two-component wave function,
The equation describes ‘two-dimensional electrons’, and the eigenspinors describe electrons
with spin direction perpendicular to the surface. In a real experiment, even if we have a
two-dimensional electron gas, the spin can point at any direction in space. Therefore, our
results are applicable if, and only if, we force the spin to be everywhere perpendicular to
the surface. This can be done if we impose sufficiently high magnetic fields perpendicular
to the manifold. Note that where the Gaussian curvature is large, this is not a trivial task at
all, but it will do as a ‘gedanken experiment’.
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